Source code for nerfstudio.field_components.embedding
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Code for embeddings.
"""
import torch
from jaxtyping import Shaped
from torch import Tensor
from nerfstudio.field_components.base_field_component import FieldComponent
[docs]class Embedding(FieldComponent):
"""Index into embeddings.
# TODO: add different types of initializations
Args:
in_dim: Number of embeddings
out_dim: Dimension of the embedding vectors
"""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.build_nn_modules()
[docs] def build_nn_modules(self) -> None:
self.embedding = torch.nn.Embedding(self.in_dim, self.out_dim)
[docs] def mean(self, dim=0):
"""Return the mean of the embedding weights along a dim."""
return self.embedding.weight.mean(dim)
[docs] def forward(self, in_tensor: Shaped[Tensor, "*batch input_dim"]) -> Shaped[Tensor, "*batch output_dim"]:
"""Call forward
Args:
in_tensor: input tensor to process
"""
return self.embedding(in_tensor)