Configs#
Base Configs
- class nerfstudio.configs.base_config.InstantiateConfig(_target: Type)[source]#
Bases:
PrintableConfig
Config class for instantiating an the class specified in the _target attribute.
- class nerfstudio.configs.base_config.LocalWriterConfig(_target: ~typing.Type = <class 'nerfstudio.utils.writer.LocalWriter'>, enable: bool = False, stats_to_track: ~typing.Tuple[~nerfstudio.utils.writer.EventName, ...] = (<EventName.ITER_TRAIN_TIME: 'Train Iter (time)'>, <EventName.TRAIN_RAYS_PER_SEC: 'Train Rays / Sec'>, <EventName.CURR_TEST_PSNR: 'Test PSNR'>, <EventName.VIS_RAYS_PER_SEC: 'Vis Rays / Sec'>, <EventName.TEST_RAYS_PER_SEC: 'Test Rays / Sec'>, <EventName.ETA: 'ETA (time)'>), max_log_size: int = 10)[source]#
Bases:
InstantiateConfig
Local Writer config
- enable: bool = False#
if True enables local logging, else disables
- max_log_size: int = 10#
maximum number of rows to print before wrapping. if 0, will print everything.
- setup(banner_messages: Optional[List[str]] = None, **kwargs) Any [source]#
Instantiate local writer
- Parameters:
banner_messages – List of strings that always print at the bottom of screen.
- stats_to_track: Tuple[EventName, ...] = (<EventName.ITER_TRAIN_TIME: 'Train Iter (time)'>, <EventName.TRAIN_RAYS_PER_SEC: 'Train Rays / Sec'>, <EventName.CURR_TEST_PSNR: 'Test PSNR'>, <EventName.VIS_RAYS_PER_SEC: 'Vis Rays / Sec'>, <EventName.TEST_RAYS_PER_SEC: 'Test Rays / Sec'>, <EventName.ETA: 'ETA (time)'>)#
specifies which stats will be logged/printed to terminal
- class nerfstudio.configs.base_config.LoggingConfig(relative_log_dir: ~pathlib.Path = PosixPath('.'), steps_per_log: int = 10, max_buffer_size: int = 20, local_writer: ~nerfstudio.configs.base_config.LocalWriterConfig = <factory>, profiler: ~typing.Literal['none', 'basic', 'pytorch'] = 'basic')[source]#
Bases:
PrintableConfig
Configuration of loggers and profilers
- local_writer: LocalWriterConfig#
if provided, will print stats locally. if None, will disable printing
- max_buffer_size: int = 20#
maximum history size to keep for computing running averages of stats. e.g. if 20, averages will be computed over past 20 occurrences.
- profiler: Literal['none', 'basic', 'pytorch'] = 'basic'#
how to profile the code; “basic” - prints speed of all decorated functions at the end of a program. “pytorch” - same as basic, but it also traces few training steps.
- relative_log_dir: Path = PosixPath('.')#
relative path to save all logged events
- steps_per_log: int = 10#
number of steps between logging stats
- class nerfstudio.configs.base_config.MachineConfig(seed: int = 42, num_devices: int = 1, num_machines: int = 1, machine_rank: int = 0, dist_url: str = 'auto', device_type: Literal['cpu', 'cuda', 'mps'] = 'cuda')[source]#
Bases:
PrintableConfig
Configuration of machine setup
- device_type: Literal['cpu', 'cuda', 'mps'] = 'cuda'#
device type to use for training
- dist_url: str = 'auto'#
distributed connection point (for DDP)
- machine_rank: int = 0#
current machine’s rank (for DDP)
- num_devices: int = 1#
total number of devices (e.g., gpus) available for train/eval
- num_machines: int = 1#
total number of distributed machines available (for DDP)
- seed: int = 42#
random seed initialization
- class nerfstudio.configs.base_config.PrintableConfig[source]#
Bases:
object
Printable Config defining str function
- class nerfstudio.configs.base_config.ViewerConfig(relative_log_filename: str = 'viewer_log_filename.txt', websocket_port: Optional[int] = None, websocket_port_default: int = 7007, websocket_host: str = '0.0.0.0', num_rays_per_chunk: int = 32768, max_num_display_images: int = 512, quit_on_train_completion: bool = False, image_format: Literal['jpeg', 'png'] = 'jpeg', jpeg_quality: int = 75, make_share_url: bool = False, camera_frustum_scale: float = 0.1, default_composite_depth: bool = True)[source]#
Bases:
PrintableConfig
Configuration for viewer instantiation
- camera_frustum_scale: float = 0.1#
Scale for the camera frustums in the viewer.
- default_composite_depth: bool = True#
The default value for compositing depth. Turn off if you want to see the camera frustums without occlusions.
- image_format: Literal['jpeg', 'png'] = 'jpeg'#
Image format viewer should use; jpeg is lossy compression, while png is lossless.
- jpeg_quality: int = 75#
Quality tradeoff to use for jpeg compression.
print a shareable URL. This flag is ignored in the legacy version of the viewer.
- Type:
Viewer beta feature
- max_num_display_images: int = 512#
Maximum number of training images to display in the viewer, to avoid lag. This does not change which images are actually used in training/evaluation. If -1, display all.
- num_rays_per_chunk: int = 32768#
number of rays per chunk to render with viewer
- quit_on_train_completion: bool = False#
Whether to kill the training job when it has completed. Note this will stop rendering in the viewer.
- relative_log_filename: str = 'viewer_log_filename.txt'#
Filename to use for the log file.
- websocket_host: str = '0.0.0.0'#
The host address to bind the websocket server to.
- websocket_port: Optional[int] = None#
The websocket port to connect to. If None, find an available port.
- websocket_port_default: int = 7007#
The default websocket port to connect to if websocket_port is not specified