Data Parsers#
Base Data Parser#
A set of standard datasets.
- class nerfstudio.data.dataparsers.base_dataparser.DataParser(config: DataParserConfig)[source]#
A dataset.
- Parameters:
config – datasetparser config containing all information needed to instantiate dataset
- config#
datasetparser config containing all information needed to instantiate dataset
- includes_time#
Does the dataset include time information in the camera poses.
- Type:
bool
- get_dataparser_outputs(split: str = 'train', **kwargs: Optional[Dict]) DataparserOutputs [source]#
Returns the dataparser outputs for the given split.
- Parameters:
split – Which dataset split to generate (train/test).
kwargs – kwargs for generating dataparser outputs.
- Returns:
DataparserOutputs containing data for the specified dataset and split
- class nerfstudio.data.dataparsers.base_dataparser.DataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('.'))[source]#
Basic dataset config
- data: Path = PosixPath('.')#
Directory specifying location of data.
- class nerfstudio.data.dataparsers.base_dataparser.DataparserOutputs(image_filenames: ~typing.List[~pathlib.Path], cameras: ~nerfstudio.cameras.cameras.Cameras, alpha_color: ~typing.Optional[~jaxtyping.Float[Tensor, '3']] = None, scene_box: ~nerfstudio.data.scene_box.SceneBox = <factory>, mask_filenames: ~typing.Optional[~typing.List[~pathlib.Path]] = None, metadata: ~typing.Dict[str, ~typing.Any] = <factory>, dataparser_transform: ~jaxtyping.Float[Tensor, '3 4'] = tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.]]), dataparser_scale: float = 1.0)[source]#
Dataparser outputs for the which will be used by the DataManager for creating RayBundle and RayGT objects.
- alpha_color: Optional[Float[Tensor, '3']] = None#
Color of dataset background.
- dataparser_scale: float = 1.0#
Scale applied by the dataparser.
- dataparser_transform: Float[Tensor, '3 4'] = tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.]])#
Transform applied by the dataparser.
- image_filenames: List[Path]#
Filenames for the images.
- mask_filenames: Optional[List[Path]] = None#
Filenames for any masks that are required
- metadata: Dict[str, Any]#
Dictionary of any metadata that be required for the given experiment. Will be processed by the InputDataset to create any additional tensors that may be required.
- save_dataparser_transform(path: Path)[source]#
Save dataparser transform to json file. Some dataparsers will apply a transform to the poses, this method allows the transform to be saved so that it can be used in other applications.
- Parameters:
path – path to save transform to
- scene_box: SceneBox#
Scene box of dataset. Used to bound the scene or provide the scene scale depending on model.
- transform_poses_to_original_space(poses: Float[Tensor, 'num_poses 3 4'], camera_convention: Literal['opengl', 'opencv'] = 'opencv') Float[Tensor, 'num_poses 3 4'] [source]#
Transforms the poses in the transformed space back to the original world coordinate system. :param poses: Poses in the transformed space :param camera_convention: Camera system convention used for the transformed poses
- Returns:
Original poses
- class nerfstudio.data.dataparsers.base_dataparser.Semantics(filenames: ~typing.List[~pathlib.Path], classes: ~typing.List[str], colors: ~torch.Tensor, mask_classes: ~typing.List[str] = <factory>)[source]#
Dataclass for semantic labels.
- classes: List[str]#
class labels for data
- colors: Tensor#
color mapping for classes
- filenames: List[Path]#
filenames to load semantic data
- mask_classes: List[str]#
classes to mask out from training for all modalities
- nerfstudio.data.dataparsers.base_dataparser.transform_poses_to_original_space(poses: Float[Tensor, 'num_poses 3 4'], applied_transform: Float[Tensor, '3 4'], applied_scale: float, camera_convention: Literal['opengl', 'opencv'] = 'opencv') Float[Tensor, 'num_poses 3 4'] [source]#
Transforms the poses in the transformed space back to the original world coordinate system. :param poses: Poses in the transformed space :param applied_transform: Transform matrix applied in the data processing step :param applied_scale: Scale used in the data processing step :param camera_convention: Camera system convention used for the transformed poses
- Returns:
Original poses
ARKitScenes#
Data parser for ARKitScenes dataset
- class nerfstudio.data.dataparsers.arkitscenes_dataparser.ARKitScenes(config: ARKitScenesDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
ARKitScenes DatasetParser
- class nerfstudio.data.dataparsers.arkitscenes_dataparser.ARKitScenesDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/ARKitScenes/3dod/Validation/41069021'), scale_factor: float = 1.0, scene_scale: float = 1.0, center_method: ~typing.Literal['poses', 'focus', 'none'] = 'poses', auto_scale_poses: bool = True, train_split_fraction: float = 0.9, depth_unit_scale_factor: float = 0.001)[source]#
Bases:
DataParserConfig
ARKitScenes dataset config. ARKitScenes dataset (http://github.com/apple/ARKitScenes) is a large-scale 3D dataset of indoor scenes. This dataparser uses 3D detection subset of the ARKitScenes dataset.
- auto_scale_poses: bool = True#
Whether to automatically scale the poses to fit in +/- 1 bounding box.
- center_method: Literal['poses', 'focus', 'none'] = 'poses'#
The method to use to center the poses.
- data: Path = PosixPath('data/ARKitScenes/3dod/Validation/41069021')#
Path to ARKitScenes folder with densely extracted scenes.
- depth_unit_scale_factor: float = 0.001#
Scales the depth values to meters. Default value is 0.001 for a millimeter to meter conversion.
- scale_factor: float = 1.0#
How much to scale the camera origins by.
- scene_scale: float = 1.0#
How much to scale the region of interest by.
- train_split_fraction: float = 0.9#
The fraction of images to use for training. The remaining images are for eval.
- nerfstudio.data.dataparsers.arkitscenes_dataparser.traj_string_to_matrix(traj_string: str)[source]#
convert traj_string into translation and rotation matrices :param traj_string: A space-delimited file where each line represents a camera position at a particular timestamp. :param The file has seven columns: :param * Column 1: timestamp :param * Columns 2-4: rotation (axis-angle representation in radians) :param * Columns 5-7: translation (usually in meters)
- Returns:
translation matrix Rt: rotation matrix
- Return type:
ts
Blender#
Data parser for blender dataset
- class nerfstudio.data.dataparsers.blender_dataparser.Blender(config: BlenderDataParserConfig)[source]#
Bases:
DataParser
Blender Dataset Some of this code comes from https://github.com/yenchenlin/nerf-pytorch/blob/master/load_blender.py#L37.
- class nerfstudio.data.dataparsers.blender_dataparser.BlenderDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/blender/lego'), scale_factor: float = 1.0, alpha_color: ~typing.Optional[str] = 'white', ply_path: ~typing.Optional[~pathlib.Path] = None)[source]#
Bases:
DataParserConfig
Blender dataset parser config
- alpha_color: Optional[str] = 'white'#
alpha color of background, when set to None, InputDataset that consumes DataparserOutputs will not attempt to blend with alpha_colors using image’s alpha channel data. Thus rgba image will be directly used in training.
- data: Path = PosixPath('data/blender/lego')#
Directory specifying location of data.
- ply_path: Optional[Path] = None#
Path to PLY file to load 3D points from, defined relative to the dataset directory. This is helpful for Gaussian splatting and generally unused otherwise. If None, points are initialized randomly.
- scale_factor: float = 1.0#
How much to scale the camera origins by.
D-NeRF#
Data parser for blender dataset
- class nerfstudio.data.dataparsers.dnerf_dataparser.DNeRF(config: DNeRFDataParserConfig)[source]#
Bases:
DataParser
DNeRF Dataset
- class nerfstudio.data.dataparsers.dnerf_dataparser.DNeRFDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/dnerf/lego'), scale_factor: float = 1.0, alpha_color: str = 'white')[source]#
Bases:
DataParserConfig
D-NeRF dataset parser config
- alpha_color: str = 'white'#
alpha color of background
- data: Path = PosixPath('data/dnerf/lego')#
Directory specifying location of data.
- scale_factor: float = 1.0#
How much to scale the camera origins by.
dycheck#
Data parser for DyCheck (https://arxiv.org/abs/2210.13445) dataset of iphone subset
- class nerfstudio.data.dataparsers.dycheck_dataparser.Dycheck(config: DycheckDataParserConfig)[source]#
Bases:
DataParser
Dycheck (https://arxiv.org/abs/2210.13445) Dataset iphone subset
- class nerfstudio.data.dataparsers.dycheck_dataparser.DycheckDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/iphone/mochi-high-five'), scale_factor: float = 5.0, alpha_color: str = 'white', downscale_factor: int = 1, scene_box_bound: float = 1.5)[source]#
Bases:
DataParserConfig
Dycheck (https://arxiv.org/abs/2210.13445) dataset parser config
- alpha_color: str = 'white'#
alpha color of background
- data: Path = PosixPath('data/iphone/mochi-high-five')#
Directory specifying location of data.
- downscale_factor: int = 1#
How much to downscale images.
- scale_factor: float = 5.0#
How much to scale the camera origins by.
- scene_box_bound: float = 1.5#
Boundary of scene box.
- nerfstudio.data.dataparsers.dycheck_dataparser.downscale(img, scale: int) ndarray [source]#
Function from DyCheck’s repo. Downscale an image.
- Parameters:
img – Input image
scale – Factor of the scale
- Returns:
New image
Instant-NGP#
Data parser for instant ngp data
- class nerfstudio.data.dataparsers.instant_ngp_dataparser.InstantNGP(config: InstantNGPDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
Instant NGP Dataset
- class nerfstudio.data.dataparsers.instant_ngp_dataparser.InstantNGPDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/ours/posterv2'), scene_scale: float = 0.3333, eval_mode: ~typing.Literal['fraction', 'filename', 'interval', 'all'] = 'fraction', train_split_fraction: float = 0.9, eval_interval: int = 8)[source]#
Bases:
DataParserConfig
Instant-NGP dataset parser config
- data: Path = PosixPath('data/ours/posterv2')#
Directory or explicit json file path specifying location of data.
- eval_interval: int = 8#
The interval between frames to use for eval. Only used when eval_mode is eval-interval.
- eval_mode: Literal['fraction', 'filename', 'interval', 'all'] = 'fraction'#
The method to use for splitting the dataset into train and eval. Fraction splits based on a percentage for train and the remaining for eval. Filename splits based on filenames containing train/eval. Interval uses every nth frame for eval. All uses all the images for any split.
- scene_scale: float = 0.3333#
How much to scale the scene.
- train_split_fraction: float = 0.9#
The percentage of the dataset to use for training. Only used when eval_mode is train-split-fraction.
Minimal#
Data parser for pre-prepared datasets for all cameras, with no additional processing needed Optional fields - semantics, mask_filenames, cameras.distortion_params, cameras.times
- class nerfstudio.data.dataparsers.minimal_dataparser.MinimalDataParser(config: MinimalDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
Minimal DatasetParser
- class nerfstudio.data.dataparsers.minimal_dataparser.MinimalDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('/home/nikhil/nerfstudio-main/tests/data/lego_test/minimal_parser'))[source]#
Bases:
DataParserConfig
Minimal dataset config
- data: Path = PosixPath('/home/nikhil/nerfstudio-main/tests/data/lego_test/minimal_parser')#
Directory specifying location of data.
NeRF-OSR#
Data parser for NeRF-OSR datasets
Presented in the paper: https://4dqv.mpi-inf.mpg.de/NeRF-OSR/
- class nerfstudio.data.dataparsers.nerfosr_dataparser.NeRFOSR(config: NeRFOSRDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
NeRFOSR Dataparser Presented in the paper: https://4dqv.mpi-inf.mpg.de/NeRF-OSR/
Some of this code comes from https://github.com/r00tman/NeRF-OSR/blob/main/data_loader_split.py
- Source data convention is:
camera coordinate system: x–>right, y–>down, z–>scene (opencv/colmap convention) poses is camera-to-world masks are 0 for dynamic content, 255 for static content
- class nerfstudio.data.dataparsers.nerfosr_dataparser.NeRFOSRDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/NeRF-OSR/Data'), scene: str = 'stjacob', scene_scale: float = 1.0, scale_factor: float = 1.0, use_masks: bool = False, orientation_method: ~typing.Literal['pca', 'up', 'vertical', 'none'] = 'vertical', center_method: ~typing.Literal['poses', 'focus', 'none'] = 'focus', auto_scale_poses: bool = True)[source]#
Bases:
DataParserConfig
Nerfstudio dataset config
- auto_scale_poses: bool = True#
Whether to automatically scale the poses to fit in +/- 1 bounding box.
- center_method: Literal['poses', 'focus', 'none'] = 'focus'#
The method to use for centering.
- data: Path = PosixPath('data/NeRF-OSR/Data')#
Directory specifying location of data.
- orientation_method: Literal['pca', 'up', 'vertical', 'none'] = 'vertical'#
The method to use for orientation.
- scale_factor: float = 1.0#
How much to scale the camera origins by.
- scene: str = 'stjacob'#
Which scene to load
- scene_scale: float = 1.0#
How much to scale the region of interest by.
- use_masks: bool = False#
Whether to use masks.
- nerfstudio.data.dataparsers.nerfosr_dataparser.get_camera_params(scene_dir: str, split: Literal['train', 'validation', 'test']) Tuple[Tensor, Tensor, int] [source]#
Load camera intrinsic and extrinsic parameters for a given scene split.
- Args”
scene_dir : The directory containing the scene data. split : The split for which to load the camera parameters.
- Returns
A tuple containing the intrinsic parameters (as a torch.Tensor of shape [N, 4, 4]), the camera-to-world matrices (as a torch.Tensor of shape [N, 4, 4]), and the number of cameras (N).
Nerfstudio#
Data parser for nerfstudio datasets.
- class nerfstudio.data.dataparsers.nerfstudio_dataparser.Nerfstudio(config: NerfstudioDataParserConfig, includes_time: bool = False, downscale_factor: Optional[int] = None)[source]#
Bases:
DataParser
Nerfstudio DatasetParser
- class nerfstudio.data.dataparsers.nerfstudio_dataparser.NerfstudioDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('.'), scale_factor: float = 1.0, downscale_factor: ~typing.Optional[int] = None, scene_scale: float = 1.0, orientation_method: ~typing.Literal['pca', 'up', 'vertical', 'none'] = 'up', center_method: ~typing.Literal['poses', 'focus', 'none'] = 'poses', auto_scale_poses: bool = True, eval_mode: ~typing.Literal['fraction', 'filename', 'interval', 'all'] = 'fraction', train_split_fraction: float = 0.9, eval_interval: int = 8, depth_unit_scale_factor: float = 0.001, mask_color: ~typing.Optional[~typing.Tuple[float, float, float]] = None, load_3D_points: bool = False)[source]#
Bases:
DataParserConfig
Nerfstudio dataset config
- auto_scale_poses: bool = True#
Whether to automatically scale the poses to fit in +/- 1 bounding box.
- center_method: Literal['poses', 'focus', 'none'] = 'poses'#
The method to use to center the poses.
- data: Path = PosixPath('.')#
Directory or explicit json file path specifying location of data.
- depth_unit_scale_factor: float = 0.001#
Scales the depth values to meters. Default value is 0.001 for a millimeter to meter conversion.
- downscale_factor: Optional[int] = None#
How much to downscale images. If not set, images are chosen such that the max dimension is <1600px.
- eval_interval: int = 8#
The interval between frames to use for eval. Only used when eval_mode is eval-interval.
- eval_mode: Literal['fraction', 'filename', 'interval', 'all'] = 'fraction'#
The method to use for splitting the dataset into train and eval. Fraction splits based on a percentage for train and the remaining for eval. Filename splits based on filenames containing train/eval. Interval uses every nth frame for eval. All uses all the images for any split.
- load_3D_points: bool = False#
Whether to load the 3D points from the colmap reconstruction.
- mask_color: Optional[Tuple[float, float, float]] = None#
Replace the unknown pixels with this color. Relevant if you have a mask but still sample everywhere.
- orientation_method: Literal['pca', 'up', 'vertical', 'none'] = 'up'#
The method to use for orientation.
- scale_factor: float = 1.0#
How much to scale the camera origins by.
- scene_scale: float = 1.0#
How much to scale the region of interest by.
- train_split_fraction: float = 0.9#
The percentage of the dataset to use for training. Only used when eval_mode is train-split-fraction.
nuScenes#
Data parser for NuScenes dataset
- class nerfstudio.data.dataparsers.nuscenes_dataparser.NuScenes(config: NuScenesDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
NuScenes DatasetParser
- class nerfstudio.data.dataparsers.nuscenes_dataparser.NuScenesDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('scene-0103'), data_dir: ~pathlib.Path = PosixPath('/mnt/local/NuScenes'), version: ~typing.Literal['v1.0-mini', 'v1.0-trainval'] = 'v1.0-mini', cameras: ~typing.Tuple[~typing.Literal['FRONT', 'FRONT_LEFT', 'FRONT_RIGHT', 'BACK', 'BACK_LEFT', 'BACK_RIGHT'], ...] = ('FRONT',), mask_dir: ~typing.Optional[~pathlib.Path] = None, train_split_fraction: float = 0.9, verbose: bool = False)[source]#
Bases:
DataParserConfig
NuScenes dataset config. NuScenes (https://www.nuscenes.org/nuscenes) is an autonomous driving dataset containing 1000 20s clips. Each clip was recorded with a suite of sensors including 6 surround cameras. It also includes 3D cuboid annotations around objects. We optionally use these cuboids to mask dynamic objects by specifying the mask_dir flag. To create these masks use nerfstudio/scripts/datasets/process_nuscenes_masks.py.
- cameras: Tuple[Literal['FRONT', 'FRONT_LEFT', 'FRONT_RIGHT', 'BACK', 'BACK_LEFT', 'BACK_RIGHT'], ...] = ('FRONT',)#
Which cameras to use.
- data: Path = PosixPath('scene-0103')#
Name of the scene.
- data_dir: Path = PosixPath('/mnt/local/NuScenes')#
Path to NuScenes dataset.
- mask_dir: Optional[Path] = None#
Path to masks of dynamic objects.
- train_split_fraction: float = 0.9#
The percent of images to use for training. The remaining images are for eval.
- verbose: bool = False#
Load dataset with verbose messaging
- version: Literal['v1.0-mini', 'v1.0-trainval'] = 'v1.0-mini'#
Dataset version.
Phototourism#
Phototourism dataset parser. Datasets and documentation here: http://phototour.cs.washington.edu/datasets/
- class nerfstudio.data.dataparsers.phototourism_dataparser.Phototourism(config: PhototourismDataParserConfig)[source]#
Bases:
DataParser
Phototourism dataset. This is based on https://github.com/kwea123/nerf_pl/blob/nerfw/datasets/phototourism.py and uses colmap’s utils file to read the poses.
- class nerfstudio.data.dataparsers.phototourism_dataparser.PhototourismDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/phototourism/brandenburg-gate'), scale_factor: float = 3.0, alpha_color: str = 'white', train_split_fraction: float = 0.9, scene_scale: float = 1.0, orientation_method: ~typing.Literal['pca', 'up', 'vertical', 'none'] = 'up', center_method: ~typing.Literal['poses', 'focus', 'none'] = 'poses', auto_scale_poses: bool = True)[source]#
Bases:
DataParserConfig
Phototourism dataset parser config
- alpha_color: str = 'white'#
alpha color of background
- auto_scale_poses: bool = True#
Whether to automatically scale the poses to fit in +/- 1 bounding box.
- center_method: Literal['poses', 'focus', 'none'] = 'poses'#
The method to use to center the poses.
- data: Path = PosixPath('data/phototourism/brandenburg-gate')#
Directory specifying location of data.
- orientation_method: Literal['pca', 'up', 'vertical', 'none'] = 'up'#
The method to use for orientation.
- scale_factor: float = 3.0#
How much to scale the camera origins by.
- scene_scale: float = 1.0#
How much to scale the region of interest by.
- train_split_fraction: float = 0.9#
The fraction of images to use for training. The remaining images are for eval.
ScanNet#
Data parser for ScanNet dataset
- class nerfstudio.data.dataparsers.scannet_dataparser.ScanNet(config: ScanNetDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
ScanNet DatasetParser
- class nerfstudio.data.dataparsers.scannet_dataparser.ScanNetDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('nvsmask3d/data/scene_example'), scale_factor: float = 1.0, scene_scale: float = 1.0, center_method: ~typing.Literal['poses', 'focus', 'none'] = 'poses', auto_scale_poses: bool = True, train_split_fraction: float = 0.9, depth_unit_scale_factor: float = 0.001, load_3D_points: bool = True, point_cloud_color: bool = True, ply_file_path: ~pathlib.Path = PosixPath('nvsmask3d/data/scene_example/scene_example.ply'))[source]#
Bases:
DataParserConfig
ScanNet dataset config. ScanNet dataset (https://www.scan-net.org/) is a large-scale 3D dataset of indoor scenes. This dataparser assumes that the dense stream was extracted from .sens files. Expected structure of scene directory:
root/ ├── color/ ├── depth/ ├── intrinsic/ ├── pose/ |── ply/
- auto_scale_poses: bool = True#
Whether to automatically scale the poses to fit in +/- 1 bounding box.
- center_method: Literal['poses', 'focus', 'none'] = 'poses'#
The method to use to center the poses.
- data: Path = PosixPath('nvsmask3d/data/scene_example')#
Path to ScanNet folder with densely extracted scenes.
- depth_unit_scale_factor: float = 0.001#
Scales the depth values to meters. Default value is 0.001 for a millimeter to meter conversion.
- load_3D_points: bool = True#
Whether to load the 3D points from the .ply
- ply_file_path: Path = PosixPath('nvsmask3d/data/scene_example/scene_example.ply')#
path to the .ply file containing the 3D points
- point_cloud_color: bool = True#
read point cloud colors from .ply files or not
- scale_factor: float = 1.0#
How much to scale the camera origins by.
- scene_scale: float = 1.0#
How much to scale the region of interest by.
- train_split_fraction: float = 0.9#
The fraction of images to use for training. The remaining images are for eval.
SDFStudio#
Datapaser for sdfstudio formatted data
- class nerfstudio.data.dataparsers.sdfstudio_dataparser.SDFStudio(config: SDFStudioDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
SDFStudio Dataset
- class nerfstudio.data.dataparsers.sdfstudio_dataparser.SDFStudioDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/DTU/scan65'), include_mono_prior: bool = False, depth_unit_scale_factor: float = 0.001, include_foreground_mask: bool = False, downscale_factor: int = 1, scene_scale: float = 2.0, skip_every_for_val_split: int = 1, auto_orient: bool = True)[source]#
Bases:
DataParserConfig
Scene dataset parser config
- data: Path = PosixPath('data/DTU/scan65')#
Directory specifying location of data.
- depth_unit_scale_factor: float = 0.001#
Scales the depth values to meters. Default value is 0.001 for a millimeter to meter conversion.
- include_foreground_mask: bool = False#
whether or not to load foreground mask
- include_mono_prior: bool = False#
whether or not to load monocular depth and normal
- scene_scale: float = 2.0#
Sets the bounding cube to have edge length of this size. The longest dimension of the axis-aligned bbox will be scaled to this value.
- skip_every_for_val_split: int = 1#
sub sampling validation images
sitcoms3D#
Data parser for sitcoms3D dataset.
The dataset is from the paper [“The One Where They Reconstructed 3D Humans and Environments in TV Shows”](https://ethanweber.me/sitcoms3D/)
- class nerfstudio.data.dataparsers.sitcoms3d_dataparser.Sitcoms3D(config: Sitcoms3DDataParserConfig, includes_time: bool = False)[source]#
Bases:
DataParser
Sitcoms3D Dataset
- class nerfstudio.data.dataparsers.sitcoms3d_dataparser.Sitcoms3DDataParserConfig(_target: ~typing.Type = <factory>, data: ~pathlib.Path = PosixPath('data/sitcoms3d/TBBT-big_living_room'), include_semantics: bool = True, downscale_factor: int = 4, scene_scale: float = 2.0)[source]#
Bases:
DataParserConfig
sitcoms3D dataset parser config
- data: Path = PosixPath('data/sitcoms3d/TBBT-big_living_room')#
Directory specifying location of data.
- include_semantics: bool = True#
whether or not to include loading of semantics data
- scene_scale: float = 2.0#
Sets the bounding cube to have edge length of this size. The longest dimension of the Sitcoms3D axis-aligned bbox will be scaled to this value.