Source code for nerfstudio.data.datasets.sdf_dataset

# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
SDFStudio dataset.
"""

from pathlib import Path
from typing import Dict

import numpy as np
import torch
from torch import Tensor

from nerfstudio.data.dataparsers.base_dataparser import DataparserOutputs
from nerfstudio.data.datasets.base_dataset import InputDataset


[docs]class SDFDataset(InputDataset): """Dataset that returns images and depths. Args: dataparser_outputs: description of where and how to read input images. scale_factor: The scaling factor for the dataparser outputs. """ exclude_batch_keys_from_device = InputDataset.exclude_batch_keys_from_device + ["depth", "normal"] def __init__(self, dataparser_outputs: DataparserOutputs, scale_factor: float = 1.0): super().__init__(dataparser_outputs, scale_factor) # can be none if monoprior not included self.depth_filenames = self.metadata["depth_filenames"] self.normal_filenames = self.metadata["normal_filenames"] self.camera_to_worlds = self.metadata["camera_to_worlds"] # can be none if auto orient not enabled in dataparser self.transform = self.metadata["transform"] self.include_mono_prior = self.metadata["include_mono_prior"]
[docs] def get_metadata(self, data: Dict) -> Dict: # TODO supports foreground_masks metadata = {} if self.include_mono_prior: depth_filepath = self.depth_filenames[data["image_idx"]] normal_filepath = self.normal_filenames[data["image_idx"]] camtoworld = self.camera_to_worlds[data["image_idx"]] # Scale depth images to meter units and also by scaling applied to cameras depth_image, normal_image = self.get_depths_and_normals( depth_filepath=depth_filepath, normal_filename=normal_filepath, camtoworld=camtoworld ) metadata["depth"] = depth_image metadata["normal"] = normal_image return metadata
[docs] def get_depths_and_normals(self, depth_filepath: Path, normal_filename: Path, camtoworld: Tensor): """function to process additional depths and normal information Args: depth_filepath: path to depth file normal_filename: path to normal file camtoworld: camera to world transformation matrix """ # load mono depth depth = np.load(depth_filepath) depth = torch.from_numpy(depth).float() # load mono normal normal = np.load(normal_filename) # transform normal to world coordinate system normal = normal * 2.0 - 1.0 # omnidata output is normalized so we convert it back to normal here normal = torch.from_numpy(normal).float() rot = camtoworld[:3, :3] normal_map = normal.reshape(3, -1) normal_map = torch.nn.functional.normalize(normal_map, p=2, dim=0) normal_map = rot @ normal_map normal = normal_map.permute(1, 0).reshape(*normal.shape[1:], 3) if self.transform is not None: h, w, _ = normal.shape normal = self.transform[:3, :3] @ normal.reshape(-1, 3).permute(1, 0) normal = normal.permute(1, 0).reshape(h, w, 3) return depth, normal