# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SDFStudio dataset.
"""
from pathlib import Path
from typing import Dict
import numpy as np
import torch
from torch import Tensor
from nerfstudio.data.dataparsers.base_dataparser import DataparserOutputs
from nerfstudio.data.datasets.base_dataset import InputDataset
[docs]class SDFDataset(InputDataset):
"""Dataset that returns images and depths.
Args:
dataparser_outputs: description of where and how to read input images.
scale_factor: The scaling factor for the dataparser outputs.
"""
exclude_batch_keys_from_device = InputDataset.exclude_batch_keys_from_device + ["depth", "normal"]
def __init__(self, dataparser_outputs: DataparserOutputs, scale_factor: float = 1.0):
super().__init__(dataparser_outputs, scale_factor)
# can be none if monoprior not included
self.depth_filenames = self.metadata["depth_filenames"]
self.normal_filenames = self.metadata["normal_filenames"]
self.camera_to_worlds = self.metadata["camera_to_worlds"]
# can be none if auto orient not enabled in dataparser
self.transform = self.metadata["transform"]
self.include_mono_prior = self.metadata["include_mono_prior"]
[docs] def get_depths_and_normals(self, depth_filepath: Path, normal_filename: Path, camtoworld: Tensor):
"""function to process additional depths and normal information
Args:
depth_filepath: path to depth file
normal_filename: path to normal file
camtoworld: camera to world transformation matrix
"""
# load mono depth
depth = np.load(depth_filepath)
depth = torch.from_numpy(depth).float()
# load mono normal
normal = np.load(normal_filename)
# transform normal to world coordinate system
normal = normal * 2.0 - 1.0 # omnidata output is normalized so we convert it back to normal here
normal = torch.from_numpy(normal).float()
rot = camtoworld[:3, :3]
normal_map = normal.reshape(3, -1)
normal_map = torch.nn.functional.normalize(normal_map, p=2, dim=0)
normal_map = rot @ normal_map
normal = normal_map.permute(1, 0).reshape(*normal.shape[1:], 3)
if self.transform is not None:
h, w, _ = normal.shape
normal = self.transform[:3, :3] @ normal.reshape(-1, 3).permute(1, 0)
normal = normal.permute(1, 0).reshape(h, w, 3)
return depth, normal