# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Collection of sampling strategies
"""
from abc import abstractmethod
from typing import Any, Callable, List, Optional, Protocol, Tuple, Union
import torch
from jaxtyping import Float
from nerfacc import OccGridEstimator
from torch import Tensor, nn
from nerfstudio.cameras.rays import Frustums, RayBundle, RaySamples
[docs]class Sampler(nn.Module):
"""Generate Samples
Args:
num_samples: number of samples to take
"""
def __init__(
self,
num_samples: Optional[int] = None,
) -> None:
super().__init__()
self.num_samples = num_samples
[docs] @abstractmethod
def generate_ray_samples(self) -> Any:
"""Generate Ray Samples"""
[docs] def forward(self, *args, **kwargs) -> Any:
"""Generate ray samples"""
return self.generate_ray_samples(*args, **kwargs)
[docs]class SpacedSampler(Sampler):
"""Sample points according to a function.
Args:
num_samples: Number of samples per ray
spacing_fn: Function that dictates sample spacing (ie `lambda x : x` is uniform).
spacing_fn_inv: The inverse of spacing_fn.
train_stratified: Use stratified sampling during training. Defaults to True
single_jitter: Use a same random jitter for all samples along a ray. Defaults to False
"""
def __init__(
self,
spacing_fn: Callable,
spacing_fn_inv: Callable,
num_samples: Optional[int] = None,
train_stratified=True,
single_jitter=False,
) -> None:
super().__init__(num_samples=num_samples)
self.train_stratified = train_stratified
self.single_jitter = single_jitter
self.spacing_fn = spacing_fn
self.spacing_fn_inv = spacing_fn_inv
[docs] def generate_ray_samples(
self,
ray_bundle: Optional[RayBundle] = None,
num_samples: Optional[int] = None,
) -> RaySamples:
"""Generates position samples according to spacing function.
Args:
ray_bundle: Rays to generate samples for
num_samples: Number of samples per ray
Returns:
Positions and deltas for samples along a ray
"""
assert ray_bundle is not None
assert ray_bundle.nears is not None
assert ray_bundle.fars is not None
num_samples = num_samples or self.num_samples
assert num_samples is not None
num_rays = ray_bundle.origins.shape[0]
bins = torch.linspace(0.0, 1.0, num_samples + 1).to(ray_bundle.origins.device)[None, ...] # [1, num_samples+1]
# TODO More complicated than it needs to be.
if self.train_stratified and self.training:
if self.single_jitter:
t_rand = torch.rand((num_rays, 1), dtype=bins.dtype, device=bins.device)
else:
t_rand = torch.rand((num_rays, num_samples + 1), dtype=bins.dtype, device=bins.device)
bin_centers = (bins[..., 1:] + bins[..., :-1]) / 2.0
bin_upper = torch.cat([bin_centers, bins[..., -1:]], -1)
bin_lower = torch.cat([bins[..., :1], bin_centers], -1)
bins = bin_lower + (bin_upper - bin_lower) * t_rand
s_near, s_far = (self.spacing_fn(x) for x in (ray_bundle.nears, ray_bundle.fars))
def spacing_to_euclidean_fn(x):
return self.spacing_fn_inv(x * s_far + (1 - x) * s_near)
euclidean_bins = spacing_to_euclidean_fn(bins) # [num_rays, num_samples+1]
ray_samples = ray_bundle.get_ray_samples(
bin_starts=euclidean_bins[..., :-1, None],
bin_ends=euclidean_bins[..., 1:, None],
spacing_starts=bins[..., :-1, None],
spacing_ends=bins[..., 1:, None],
spacing_to_euclidean_fn=spacing_to_euclidean_fn,
)
return ray_samples
[docs]class LinearDisparitySampler(SpacedSampler):
"""Sample linearly in disparity along a ray
Args:
num_samples: Number of samples per ray
train_stratified: Use stratified sampling during training. Defaults to True
single_jitter: Use a same random jitter for all samples along a ray. Defaults to False
"""
def __init__(
self,
num_samples: Optional[int] = None,
train_stratified=True,
single_jitter=False,
) -> None:
super().__init__(
num_samples=num_samples,
spacing_fn=lambda x: 1 / x,
spacing_fn_inv=lambda x: 1 / x,
train_stratified=train_stratified,
single_jitter=single_jitter,
)
[docs]class SqrtSampler(SpacedSampler):
"""Square root sampler along a ray
Args:
num_samples: Number of samples per ray
train_stratified: Use stratified sampling during training. Defaults to True
"""
def __init__(
self,
num_samples: Optional[int] = None,
train_stratified=True,
single_jitter=False,
) -> None:
super().__init__(
num_samples=num_samples,
spacing_fn=torch.sqrt,
spacing_fn_inv=lambda x: x**2,
train_stratified=train_stratified,
single_jitter=single_jitter,
)
[docs]class LogSampler(SpacedSampler):
"""Log sampler along a ray
Args:
num_samples: Number of samples per ray
train_stratified: Use stratified sampling during training. Defaults to True
"""
def __init__(
self,
num_samples: Optional[int] = None,
train_stratified=True,
single_jitter=False,
) -> None:
super().__init__(
num_samples=num_samples,
spacing_fn=torch.log,
spacing_fn_inv=torch.exp,
train_stratified=train_stratified,
single_jitter=single_jitter,
)
[docs]class PDFSampler(Sampler):
"""Sample based on probability distribution
Args:
num_samples: Number of samples per ray
train_stratified: Randomize location within each bin during training.
single_jitter: Use a same random jitter for all samples along a ray. Defaults to False
include_original: Add original samples to ray.
histogram_padding: Amount to weights prior to computing PDF.
"""
def __init__(
self,
num_samples: Optional[int] = None,
train_stratified: bool = True,
single_jitter: bool = False,
include_original: bool = True,
histogram_padding: float = 0.01,
) -> None:
super().__init__(num_samples=num_samples)
self.train_stratified = train_stratified
self.include_original = include_original
self.histogram_padding = histogram_padding
self.single_jitter = single_jitter
[docs] def generate_ray_samples(
self,
ray_bundle: Optional[RayBundle] = None,
ray_samples: Optional[RaySamples] = None,
weights: Optional[Float[Tensor, "*batch num_samples 1"]] = None,
num_samples: Optional[int] = None,
eps: float = 1e-5,
) -> RaySamples:
"""Generates position samples given a distribution.
Args:
ray_bundle: Rays to generate samples for
ray_samples: Existing ray samples
weights: Weights for each bin
num_samples: Number of samples per ray
eps: Small value to prevent numerical issues.
Returns:
Positions and deltas for samples along a ray
"""
if ray_samples is None or ray_bundle is None:
raise ValueError("ray_samples and ray_bundle must be provided")
assert weights is not None, "weights must be provided"
num_samples = num_samples or self.num_samples
assert num_samples is not None
num_bins = num_samples + 1
weights = weights[..., 0] + self.histogram_padding
# Add small offset to rays with zero weight to prevent NaNs
weights_sum = torch.sum(weights, dim=-1, keepdim=True)
padding = torch.relu(eps - weights_sum)
weights = weights + padding / weights.shape[-1]
weights_sum += padding
pdf = weights / weights_sum
cdf = torch.min(torch.ones_like(pdf), torch.cumsum(pdf, dim=-1))
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], dim=-1)
if self.train_stratified and self.training:
# Stratified samples between 0 and 1
u = torch.linspace(0.0, 1.0 - (1.0 / num_bins), steps=num_bins, device=cdf.device)
u = u.expand(size=(*cdf.shape[:-1], num_bins))
if self.single_jitter:
rand = torch.rand((*cdf.shape[:-1], 1), device=cdf.device) / num_bins
else:
rand = torch.rand((*cdf.shape[:-1], num_samples + 1), device=cdf.device) / num_bins
u = u + rand
else:
# Uniform samples between 0 and 1
u = torch.linspace(0.0, 1.0 - (1.0 / num_bins), steps=num_bins, device=cdf.device)
u = u + 1.0 / (2 * num_bins)
u = u.expand(size=(*cdf.shape[:-1], num_bins))
u = u.contiguous()
assert ray_samples.spacing_starts is not None and ray_samples.spacing_ends is not None, (
"ray_sample spacing_starts and spacing_ends must be provided"
)
assert ray_samples.spacing_to_euclidean_fn is not None, "ray_samples.spacing_to_euclidean_fn must be provided"
existing_bins = torch.cat(
[
ray_samples.spacing_starts[..., 0],
ray_samples.spacing_ends[..., -1:, 0],
],
dim=-1,
)
inds = torch.searchsorted(cdf, u, side="right")
below = torch.clamp(inds - 1, 0, existing_bins.shape[-1] - 1)
above = torch.clamp(inds, 0, existing_bins.shape[-1] - 1)
cdf_g0 = torch.gather(cdf, -1, below)
bins_g0 = torch.gather(existing_bins, -1, below)
cdf_g1 = torch.gather(cdf, -1, above)
bins_g1 = torch.gather(existing_bins, -1, above)
t = torch.clip(torch.nan_to_num((u - cdf_g0) / (cdf_g1 - cdf_g0), 0), 0, 1)
bins = bins_g0 + t * (bins_g1 - bins_g0)
if self.include_original:
bins, _ = torch.sort(torch.cat([existing_bins, bins], -1), -1)
# Stop gradients
bins = bins.detach()
euclidean_bins = ray_samples.spacing_to_euclidean_fn(bins)
ray_samples = ray_bundle.get_ray_samples(
bin_starts=euclidean_bins[..., :-1, None],
bin_ends=euclidean_bins[..., 1:, None],
spacing_starts=bins[..., :-1, None],
spacing_ends=bins[..., 1:, None],
spacing_to_euclidean_fn=ray_samples.spacing_to_euclidean_fn,
)
return ray_samples
[docs]class DensityFn(Protocol):
"""
Function that evaluates density at a given point.
"""
def __call__(
self, positions: Float[Tensor, "*batch 3"], times: Optional[Float[Tensor, "*batch 1"]] = None
) -> Float[Tensor, "*batch 1"]: ...
[docs]class VolumetricSampler(Sampler):
"""Sampler inspired by the one proposed in the Instant-NGP paper.
Generates samples along a ray by sampling the occupancy field.
Optionally removes occluded samples if the density_fn is provided.
Args:
occupancy_grid: Occupancy grid to sample from.
density_fn: Function that evaluates density at a given point.
scene_aabb: Axis-aligned bounding box of the scene, should be set to None if the scene is unbounded.
"""
def __init__(
self,
occupancy_grid: OccGridEstimator,
density_fn: Optional[DensityFn] = None,
):
super().__init__()
assert occupancy_grid is not None
self.density_fn = density_fn
self.occupancy_grid = occupancy_grid
[docs] def get_sigma_fn(self, origins, directions, times=None) -> Optional[Callable]:
"""Returns a function that returns the density of a point.
Args:
origins: Origins of rays
directions: Directions of rays
times: Times at which rays are sampled
Returns:
Function that returns the density of a point or None if a density function is not provided.
"""
if self.density_fn is None or not self.training:
return None
density_fn = self.density_fn
def sigma_fn(t_starts, t_ends, ray_indices):
t_origins = origins[ray_indices]
t_dirs = directions[ray_indices]
positions = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0
if times is None:
return density_fn(positions).squeeze(-1)
return density_fn(positions, times[ray_indices]).squeeze(-1)
return sigma_fn
[docs] def generate_ray_samples(self) -> RaySamples:
raise RuntimeError(
"The VolumetricSampler fuses sample generation and density check together. Please call forward() directly."
)
[docs] def forward(
self,
ray_bundle: RayBundle,
render_step_size: float,
near_plane: float = 0.0,
far_plane: Optional[float] = None,
alpha_thre: float = 0.01,
cone_angle: float = 0.0,
) -> Tuple[RaySamples, Float[Tensor, "total_samples "]]:
"""Generate ray samples in a bounding box.
Args:
ray_bundle: Rays to generate samples for
render_step_size: Minimum step size to use for rendering
near_plane: Near plane for raymarching
far_plane: Far plane for raymarching
alpha_thre: Opacity threshold skipping samples.
cone_angle: Cone angle for raymarching, set to 0 for uniform marching.
Returns:
a tuple of (ray_samples, packed_info, ray_indices)
The ray_samples are packed, only storing the valid samples.
The ray_indices contains the indices of the rays that each sample belongs to.
"""
rays_o = ray_bundle.origins.contiguous()
rays_d = ray_bundle.directions.contiguous()
times = ray_bundle.times
if ray_bundle.nears is not None and ray_bundle.fars is not None:
t_min = ray_bundle.nears.contiguous().reshape(-1)
t_max = ray_bundle.fars.contiguous().reshape(-1)
else:
t_min = None
t_max = None
if far_plane is None:
far_plane = 1e10
if ray_bundle.camera_indices is not None:
camera_indices = ray_bundle.camera_indices.contiguous()
else:
camera_indices = None
ray_indices, starts, ends = self.occupancy_grid.sampling(
rays_o=rays_o,
rays_d=rays_d,
t_min=t_min,
t_max=t_max,
sigma_fn=self.get_sigma_fn(rays_o, rays_d, times),
render_step_size=render_step_size,
near_plane=near_plane,
far_plane=far_plane,
stratified=self.training,
cone_angle=cone_angle,
alpha_thre=alpha_thre,
)
num_samples = starts.shape[0]
if num_samples == 0:
# create a single fake sample and update packed_info accordingly
# this says the last ray in packed_info has 1 sample, which starts and ends at 1
ray_indices = torch.zeros((1,), dtype=torch.long, device=rays_o.device)
starts = torch.ones((1,), dtype=starts.dtype, device=rays_o.device)
ends = torch.ones((1,), dtype=ends.dtype, device=rays_o.device)
origins = rays_o[ray_indices]
dirs = rays_d[ray_indices]
if camera_indices is not None:
camera_indices = camera_indices[ray_indices]
ray_samples = RaySamples(
frustums=Frustums(
origins=origins,
directions=dirs,
starts=starts[..., None],
ends=ends[..., None],
pixel_area=ray_bundle[ray_indices].pixel_area,
),
camera_indices=camera_indices,
)
if ray_bundle.times is not None:
ray_samples.times = ray_bundle.times[ray_indices]
return ray_samples, ray_indices
[docs]class ProposalNetworkSampler(Sampler):
"""Sampler that uses a proposal network to generate samples.
Args:
num_proposal_samples_per_ray: Number of samples to generate per ray for each proposal step.
num_nerf_samples_per_ray: Number of samples to generate per ray for the NERF model.
num_proposal_network_iterations: Number of proposal network iterations to run.
single_jitter: Use a same random jitter for all samples along a ray.
update_sched: A function that takes the iteration number of steps between updates.
initial_sampler: Sampler to use for the first iteration. Uses UniformLinDispPiecewise if not set.
pdf_sampler: PDFSampler to use after the first iteration. Uses PDFSampler if not set.
"""
def __init__(
self,
num_proposal_samples_per_ray: Tuple[int, ...] = (64,),
num_nerf_samples_per_ray: int = 32,
num_proposal_network_iterations: int = 2,
single_jitter: bool = False,
update_sched: Callable = lambda x: 1,
initial_sampler: Optional[Sampler] = None,
pdf_sampler: Optional[PDFSampler] = None,
) -> None:
super().__init__()
self.num_proposal_samples_per_ray = num_proposal_samples_per_ray
self.num_nerf_samples_per_ray = num_nerf_samples_per_ray
self.num_proposal_network_iterations = num_proposal_network_iterations
self.update_sched = update_sched
if self.num_proposal_network_iterations < 1:
raise ValueError("num_proposal_network_iterations must be >= 1")
# samplers
if initial_sampler is None:
self.initial_sampler = UniformLinDispPiecewiseSampler(single_jitter=single_jitter)
else:
self.initial_sampler = initial_sampler
if pdf_sampler is None:
self.pdf_sampler = PDFSampler(include_original=False, single_jitter=single_jitter)
else:
self.pdf_sampler = pdf_sampler
self._anneal = 1.0
self._steps_since_update = 0
self._step = 0
[docs] def set_anneal(self, anneal: float) -> None:
"""Set the anneal value for the proposal network."""
self._anneal = anneal
[docs] def step_cb(self, step):
"""Callback to register a training step has passed. This is used to keep track of the sampling schedule"""
self._step = step
self._steps_since_update += 1
[docs] def generate_ray_samples(
self,
ray_bundle: Optional[RayBundle] = None,
density_fns: Optional[List[Callable]] = None,
) -> Tuple[RaySamples, List, List]:
assert ray_bundle is not None
assert density_fns is not None
weights_list = []
ray_samples_list = []
n = self.num_proposal_network_iterations
weights = None
ray_samples = None
updated = self._steps_since_update > self.update_sched(self._step) or self._step < 10
for i_level in range(n + 1):
is_prop = i_level < n
num_samples = self.num_proposal_samples_per_ray[i_level] if is_prop else self.num_nerf_samples_per_ray
if i_level == 0:
# Uniform sampling because we need to start with some samples
ray_samples = self.initial_sampler(ray_bundle, num_samples=num_samples)
else:
# PDF sampling based on the last samples and their weights
# Perform annealing to the weights. This will be a no-op if self._anneal is 1.0.
assert weights is not None
annealed_weights = torch.pow(weights, self._anneal)
ray_samples = self.pdf_sampler(ray_bundle, ray_samples, annealed_weights, num_samples=num_samples)
if is_prop:
if updated:
# always update on the first step or the inf check in grad scaling crashes
density = density_fns[i_level](ray_samples.frustums.get_positions())
else:
with torch.no_grad():
density = density_fns[i_level](ray_samples.frustums.get_positions())
weights = ray_samples.get_weights(density)
weights_list.append(weights) # (num_rays, num_samples)
ray_samples_list.append(ray_samples)
if updated:
self._steps_since_update = 0
assert ray_samples is not None
return ray_samples, weights_list, ray_samples_list
[docs]class NeuSSampler(Sampler):
"""NeuS sampler that uses a sdf network to generate samples with fixed variance value in each iterations."""
def __init__(
self,
num_samples: int = 64,
num_samples_importance: int = 64,
num_samples_outside: int = 32,
num_upsample_steps: int = 4,
base_variance: float = 64,
single_jitter: bool = True,
) -> None:
super().__init__()
self.num_samples = num_samples
self.num_samples_importance = num_samples_importance
self.num_samples_outside = num_samples_outside
self.num_upsample_steps = num_upsample_steps
self.base_variance = base_variance
self.single_jitter = single_jitter
# samplers
self.uniform_sampler = UniformSampler(single_jitter=single_jitter)
self.pdf_sampler = PDFSampler(
include_original=False,
single_jitter=single_jitter,
histogram_padding=1e-5,
)
self.outside_sampler = LinearDisparitySampler()
[docs] def generate_ray_samples(
self,
ray_bundle: Optional[RayBundle] = None,
sdf_fn: Optional[Callable[[RaySamples], torch.Tensor]] = None,
ray_samples: Optional[RaySamples] = None,
) -> Union[Tuple[RaySamples, torch.Tensor], RaySamples]:
assert ray_bundle is not None
assert sdf_fn is not None
# Start with uniform sampling
if ray_samples is None:
ray_samples = self.uniform_sampler(ray_bundle, num_samples=self.num_samples)
assert ray_samples is not None
total_iters = 0
sorted_index = None
sdf: Optional[torch.Tensor] = None
new_samples = ray_samples
base_variance = self.base_variance
while total_iters < self.num_upsample_steps:
with torch.no_grad():
new_sdf = sdf_fn(new_samples)
# merge sdf predictions
if sorted_index is not None:
assert sdf is not None
sdf_merge = torch.cat([sdf.squeeze(-1), new_sdf.squeeze(-1)], -1)
sdf = torch.gather(sdf_merge, 1, sorted_index).unsqueeze(-1)
else:
sdf = new_sdf
# compute with fix variances
alphas = self.rendering_sdf_with_fixed_inv_s(
ray_samples, sdf.reshape(ray_samples.shape), inv_s=base_variance * 2**total_iters
)
weights = ray_samples.get_weights_and_transmittance_from_alphas(alphas[..., None], weights_only=True)
weights = torch.cat((weights, torch.zeros_like(weights[:, :1])), dim=1)
new_samples = self.pdf_sampler(
ray_bundle,
ray_samples,
weights,
num_samples=self.num_samples_importance // self.num_upsample_steps,
)
ray_samples, sorted_index = self.merge_ray_samples(ray_bundle, ray_samples, new_samples)
total_iters += 1
return ray_samples
[docs] @staticmethod
def rendering_sdf_with_fixed_inv_s(
ray_samples: RaySamples, sdf: Float[Tensor, "num_samples 1"], inv_s: int
) -> Float[Tensor, "num_samples 1"]:
"""
rendering given a fixed inv_s as NeuS
Args:
ray_samples: samples along ray
sdf: sdf values along ray
inv_s: fixed variance value
Returns:
alpha value
"""
batch_size = ray_samples.shape[0]
prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
assert ray_samples.deltas is not None
deltas = ray_samples.deltas[:, :-1, 0]
mid_sdf = (prev_sdf + next_sdf) * 0.5
cos_val = (next_sdf - prev_sdf) / (deltas + 1e-5)
# ----------------------------------------------------------------------------------------------------------
# Use min value of [ cos, prev_cos ]
# Though it makes the sampling (not rendering) a little bit biased, this strategy can make the sampling more
# robust when meeting situations like below:
#
# SDF
# ^
# |\ -----x----...
# | \ /
# | x x
# |---\----/-------------> 0 level
# | \ /
# | \/
# |
# ----------------------------------------------------------------------------------------------------------
prev_cos_val = torch.cat([torch.zeros([batch_size, 1], device=sdf.device), cos_val[:, :-1]], dim=-1)
cos_val = torch.stack([prev_cos_val, cos_val], dim=-1)
cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False)
cos_val = cos_val.clip(-1e3, 0.0)
dist = deltas
prev_esti_sdf = mid_sdf - cos_val * dist * 0.5
next_esti_sdf = mid_sdf + cos_val * dist * 0.5
prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s)
next_cdf = torch.sigmoid(next_esti_sdf * inv_s)
alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
return alpha
[docs] @staticmethod
def merge_ray_samples(ray_bundle: RayBundle, ray_samples_1: RaySamples, ray_samples_2: RaySamples):
"""Merge two set of ray samples and return sorted index which can be used to merge sdf values
Args:
ray_samples_1 : ray_samples to merge
ray_samples_2 : ray_samples to merge
"""
assert ray_samples_1.spacing_starts is not None and ray_samples_2.spacing_starts is not None
assert ray_samples_1.spacing_ends is not None and ray_samples_2.spacing_ends is not None
assert ray_samples_1.spacing_to_euclidean_fn is not None
starts_1 = ray_samples_1.spacing_starts[..., 0]
starts_2 = ray_samples_2.spacing_starts[..., 0]
ends = torch.maximum(ray_samples_1.spacing_ends[..., -1:, 0], ray_samples_2.spacing_ends[..., -1:, 0])
bins, sorted_index = torch.sort(torch.cat([starts_1, starts_2], -1), -1)
bins = torch.cat([bins, ends], dim=-1)
# Stop gradients
bins = bins.detach()
euclidean_bins = ray_samples_1.spacing_to_euclidean_fn(bins)
ray_samples = ray_bundle.get_ray_samples(
bin_starts=euclidean_bins[..., :-1, None],
bin_ends=euclidean_bins[..., 1:, None],
spacing_starts=bins[..., :-1, None],
spacing_ends=bins[..., 1:, None],
spacing_to_euclidean_fn=ray_samples_1.spacing_to_euclidean_fn,
)
return ray_samples, sorted_index